A fast simulation method for 1D heat conduction
نویسندگان
چکیده
A flexible solution method for the initial-boundary value problem of the temperature field in a one-dimensional domain of a solid with significantly nonlinear material parameters and radiation boundary conditions is proposed. A transformation of the temperature values allows to isolate the nonlinear material characteristics into a single coefficient of the heat conduction equation. The Galerkin method is utilized for spatial discretization of the problem and integration of the time domain is done by constraining the boundary heat fluxes to piecewise linear, discontinuous signals. The radiative heat exchange is computed with the help of the Stefan-Boltzmann law, such that the ambient temperatures serve as system inputs. The feasibility and accuracy of the proposed method are demonstrated by means of an example of heat treatment of a steel slab, where numerical results are compared to the finite difference method.
منابع مشابه
Effective phonons in anharmonic lattices: anomalous vs normal heat conduction
– We study heat conduction in one dimensional (1D) anharmonic lattices analytically and numerically by using an effective phonon theory. It is found that every effective phonon mode oscillates quasi-periodically. By weighting the power spectrum of the total heat flux in the Debye formula, we obtain a unified formalism that can explain anomalous heat conduction in momentum conserved lattices wit...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملStudy of transient heat conduction in 2.5D domains using the boundary element method
This paper presents the solution for transient heat conduction around a cylindrical irregular inclusion of infinite length, inserted in a homogeneous elastic medium and subjected to heat point sources placed at some point in the host medium. The solution is computed in the frequency domain for a wide range of frequencies and axial wavenumbers, and time series are then obtained by means of (fast...
متن کاملTemperature dependence of thermal conductivity in 1D nonlinear lattices
We examine the temperature dependence of thermal conductivity of one dimensional nonlinear (anharmonic) lattices with and without on-site potential. It is found from computer simulation that the heat conductivity depends on temperature via the strength of nonlinearity. Based on this correlation, we make a conjecture in the effective phonon theory that the meanfree-path of the effective phonon i...
متن کاملParallel hybrid PSO with CUDA for lD heat conduction equation
Objectives: We propose a parallel hybrid particle swarm optimization (PHPSO) algorithm to reduce the computation cost because solving the one-dimensional (1D) heat conduction equation requires large computational cost which imposes a great challenge to both common hardware and software equipments. Background: Over the past few years, GPUs have quickly emerged as inexpensive parallel processors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 82 شماره
صفحات -
تاریخ انتشار 2011